

AQA Computer Science A-Level
4.3.6 Optimisation algorithm

Intermediate Notes

www.pmt.education

Specification:

4.3.6.1 Dijkstra’s shortest path algorithm

Understand and be able to trace Dijkstra’s shortest path algorithm
Be aware of applications of shortest path algorithm

www.pmt.education

Optimisation Algorithms

An ​optimisation ​ ​algorithm​ finds the ​best possible solution
to the problem posed. The only one you must be aware of
is ​Dijkstra’s ​ (pronounced dyke-struh’s) ​algorithm ​, which
finds the ​shortest path​ from a starting node to ​every other
node ​ in a network.

These points may be modelled as ​nodes ​ in a ​weighted
graph ​. You will not be asked to recall the steps of the
algorithm in an exam, although you may be asked to
identify it and state its purpose and/or ​trace​ the code.

Dijkstra’s Algorithm

As mentioned above, ​Dijkstra’s algorithm ​ is used to find
the ​shortest path​ between ​two nodes ​ in a ​graph​. If you
take maths for A level, you may have already come across
this algorithm.

However, in maths Dijkstra you will normally only be asked for the finished path,
whereas computer science Dijkstra will require you to have a full understanding of the
code, often leading to filling in a dry run table.

Satellite navigation systems ​ use Dijkstra’s algorithm to find the shortest route between
two geographical destinations.

Dijkstra’s Algorithm Overview:

www.pmt.education

www.pmt.education

Dijkstra’s Algorithm Example:

Here is a graph with nodes A to E. The numbers represent
the time in ​minutes​ it would take travel along each ​edge ​.

Our task is to get from ​A to E​ in the shortest amount of
time. The first step is to set up a table containing all the
vertices.

Starting from A, we list all the ​connections to other nodes ​. Where A is not directly
connected to the node, we write ∞ because there is effectively no way to get to them - it
would take an​ infinite time​ to reach them.

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

The subscript A next to each value tells us that the weight is ​relative ​to A. This comes in
useful at the end of the algorithm, when we trace back our steps to find the route that
we took through the network.

Node A has now been inspected, we’ll identify this in the table by shading it yellow.

www.pmt.education

The next step is to select the node in the table with the lowest weight which hasn’t yet
been inspected. In this case, that is C with a weight of 8. We add a row in the table for C
and can now begin to fill in weights for C.

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

C

We now look at the graph for the new weights and add them to the table if they are less
than the value currently under the node when added to the shortest weight to the
chosen node (8 in this case).

There is no connection from A to C with a value of less than 0, so we leave A’s weight
as 0 from A.

The connection from C to B has a weight of 3, which leaves a total weight of 11 when
added to our current weight to E (8). The current value of infinity is higher, so we
replace it with 11 from C.

Moving on to C, we cannot include connections from one node to itself so we leave the
value as 8 from A.

Now at D, there is a connection of weight 12 to C. Adding this to our current weight for
C (8) gives us 20. 20 is lower than infinity so we place 20 in the table, and mark it as
from C.

Finally, C to E is left as infinity as there is no direct connection between these nodes.

We can now mark C as visited. Our table now looks like this:

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

C 0​A 11​C 8​A 20​C ∞​A

www.pmt.education

Again, we select the node in the table with the lowest weight which hasn’t yet been
inspected. In this case, that is B with a weight of 11. We add a row in the table for B and
can now begin to fill in weights for B.

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

C 0​A 11​C 8​A 20​C ∞​A

B

We now look at the graph for the new weights and add them to the table if they are less
than the value currently under the node when added to the shortest weight to the
chosen node (11 in this case).

There is no connection from B to A so we leave this as 0 from A.

Looking at node B, we cannot include connections from one node to itself so we leave
the value as 11 from C.

Moving on to C, B and C are connected with a weight of 3. Adding this to the 11 we
have already used on our way to B, we get 14 which is higher than the current 8. We
leave the value as 8.

Now at D, there is a connection of weight 3 to B. Adding this to our current weight for B
(11) gives us 14. 14 is lower than 20 so we place 14 in the table, and mark it as from B.

Finally, B and E are connected with a weight of 15. Adding this to 11 gives us 26. This is
lower than the current value of infinity so we place 26 in the table and mark it as from B.

We can now mark B as inspected. Our table now looks like this:

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

C 0​A 11​C 8​A 20​C ∞​A

B 0​A 11​C 8​A 14​B 26​B

www.pmt.education

Once again we select the node in the table with the lowest weight which hasn’t yet been
inspected. In this case, that is D with a weight of 14. We add a row in the table for D and
can now begin to fill in weights for D.

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

C 0​A 11​C 8​A 20​C ∞​A

B 0​A 11​C 8​A 14​B 26​B

D

We now look at the graph for the new weights and add them to the table if they are less
than the value currently under the node when added to the shortest weight to the
chosen node (14 in this case). There is no connection from D to A so we leave this as 0
from A.

Looking at node B, there is a connection between D and B with weight 3. Adding this to
14 gives us 17 which is greater than the current weight of 11. We leave the table as it is.

Moving on to C, D and C are connected with a weight of 12. Adding this to the 14 we
have already used on our way to B, we get 26 which is higher than the current 8. We
leave the value as 8.

Now at D, we cannot consider connections from one node to itself so we move on.

Finally, D and E are connected with a weight of 9. Adding this to 14 gives 23 which is
less than the 26 currently in place. We place 23 in the table., marking it as from D.

We can now mark D as inspected. Our table now looks like this:

V A B C D E

A 0​A ∞​A 8​A ∞​A ∞​A

C 0​A 11​C 8​A 20​C ∞​A

B 0​A 11​C 8​A 14​B 26​B

www.pmt.education

D 0​A 11​C 8​A 14​B 23​D

We now know that the shortest possible path between the nodes A and E has a weight
of 23. In order to find the path that we took, we make use of the subscript letters.

Start from the finishing node, E. The value of 23 at E is marked as from D. The final
value in D’s column is 14 from B. Looking at B’s column, we see that it is 11 from C.
Finally, C is marked as 8 from A.

This process, which the diagram above represents, results in the nodes E, D, B, C, A.
Reverse this order to get the shortest path through the network.

The shortest path through the network from A to E is

A, C, B, D, E and has a weight of 23 minutes.

www.pmt.education

